
CalliRewrite: Recovering Handwriting Behaviors from Calligraphy
Images without Supervision

Supplemental Material

Yuxuan Luo1∗, Zekun Wu1∗, Zhouhui Lian1†

I. COARSE SEQUENCE EXTRACTION

A. Architecture Introduction

Our model for coarse sequence extraction utilizes the
General Virtual Sketching Framework (GVS) [1] (visual-
ized in Figure 1a). It employs a convolutional neural net-
work (CNN) coupled with a Long Short-Term Memory
(LSTM) model to decompose line-art images into quadratic
Bézier representations. At each time step t, the model
processes a dynamic image patch, yielding a vector at =
(xc, yc,∆x,∆y, w,∆s, p)t. This vector is transformed into
quadratic Bézier strokes for rendering and state updating.
Here, w ∈ [0, 1] represents stroke width, and ∆s ∈ [0, k]
(where k > 1) denotes the window scaling factor.

The dynamic image patch is generated through a dynamic
window and aligned cropping approach. To address misalign-
ment concerns, Mo et al. introduced an aligned cropping
operator inspired by He et al. [2]. This operator subdivides
the window into spatial bins using the window size Wt−1 and
a resampling size Wr = 128 × 128. Points within each bin
are sampled via bilinear interpolation, and averaged values
within each bin form the final fixed-size image patch Wr,
effectively mitigating quantization artifacts.

The differentiable pasting operation also relies on bilin-
ear image interpolation. The key distinction between these
modules lies in their utilization of 2D interpolations under
distinct coordinate systems, necessitating a coordinate system
transformation. For further insights, refer to Figure 1b.

B. Unsupervised Loss Design

The existing GVS loss functions, including the raster
loss Lras, out-of-bound penalty Lout, and regularization loss
Lreg, do not fully address human-like writing behaviors
and struggle with thicker strokes in Chinese calligraphy.
To enhance continuity and stroke sequencing, we augment
finetuning with 1000 glyphs sourced from KaiTi-GB2312 [3]
and KanjiVG [4]. We also introduce smooth and angle loss
to facilitate learning comprehensive stroke decomposition,
adhering to more natural writing order conventions.

Smoothness Loss, as detailed in our paper, addresses
the intersection problem. Here, we provide an additional
example to illustrate its rationale, along with the necessity of
applying a scaling factor of 0.5 before the smoothness loss.

1Wangxuan Institute of Computer Technology, Peking University
∗Equal contribution
†Corresponding author: lianzhouhui@pku.edu.cn

Crop
&

Resize

Canvas

Canvas

Image

Render
&

Paste
LSTM

CNN
Encoder

(a) Coarse Sequence Extraction pipeline.

(b) Different types of cropping and pasting operations.

Fig. 1: (a): Model pipeline includes aligned cropping, CNN-
based encoder, LSTM and differentiable pasting. (b): Left:
Quantization leads to misalignment; Mid: Aligned Cropping
uses sampling and bilinear interpolation; Right: Differen-
tiable pasting, similar to Aligned Cropping.

Angle Loss has been a focal point in cognitive science,
particularly regarding writing order. In the 1980s, an oscil-
lation model [5] proposed for cursive Latin writing depicted
angular motion within 0◦ to 60◦ range, either clockwise
or counterclockwise. Thomassen et al. [6] systematically
studied stroke order in basic geometric patterns, identifying
five common rules in cursive scripts: Threading, Starting
from the far left, Anchoring, Starting with vertical strokes,
and Beginning strokes from the top. Teulings et al. [7]
discovered orthogonal axes of wrist and finger movement,
averaging +45 and -45 degrees relative to the baseline.
Li et al. [8] divided Chinese strokes into seven ranges,
whereas Neo et al. [9] categorized stroke directions into
eight quadrants. Thomassen et al. [10] discussed directional
preference development, suggesting left-handed individuals
may exhibit distinct writing behaviors.

We formulate the angle loss following the right-handed
hypothesis and the prevalent left-to-right, up-to-down con-
vention. Each initial direction is constrained within +75◦

to −165◦ range. Instances exceeding this boundary undergo
cosine similarity (C) computation between stroke direction

S⃗t = (
−−−→
O0O2)t and a 135◦ normal vector a⃗ = (−

√
2
2 ,

√
2
2).

Lang =
1

T

T∑
t=1

{
C(S⃗t, a⃗), C(S⃗t, a⃗) ≥ 0.5

0, C(S⃗t, a⃗) < 0.5..

՜
𝜃

𝑠𝑘𝑒𝑙

𝑠𝑘𝑒𝑙

 ՜
𝜃′

(a) C ∈ (−1,−0.7].

𝑠𝑘𝑒𝑙

𝑠𝑘𝑒𝑙

՜
𝜃

 ՜
𝜃′

(b) C ∈ (−0.7, 0.96].

𝑠𝑘𝑒𝑙

𝑠𝑘𝑒𝑙
 ՜

𝜃
 ՜

𝜃′

(c) C ∈ (0.96, 1].
Fig. 2: In the droplet-shaped calligraphy brush model, the
dynamics are modeled. The angle of the brush tip changes
according to three different situations corresponding to the
increasing motion changes of the brush.

II. MODELING WRITING UTENSILS

We undertake the modeling of the fude pen, flat-tip marker,
and calligraphy brush in our virtual and physical environ-
ment. In this section, we delineate our modeling procedures
and explain the calibration process for robotic demonstration.

A. Geometry Properties

We describe geometric properties of writing instruments
using parameters r, l, and θ. The fude pen is represented by
an ellipse with semi-minor axis r and semi-major axis l. The
flat-tip marker is depicted by a rectangle with half-width r
and half-length l. The inclination angle of these shapes is
denoted by θ. The fude pen is modeled as soft body while
the marker is rigid.

Modeling the calligraphy brush is worth discussing. Pre-
vious graphics-related studies have modeled the complex
system with 3D meshes or hair clusters [11–13]. However,
following Xie et al. [14], our approach centers on the
two-dimensional contact shape for approximation. Here, r
represents the circular belly’s radius, l denotes the distance
from the pen tip to the circle’s center, and θ signifies the
counterclockwise rotation angle to the pen tip in the global
coordinate system. Through measurement, we establish the
l − r relationship using least square approximation:

l = 0.003 + 2.021× r.

This relation, defined in the tool property files, can be
adjusted through calibration.

B. Defining Motion Dynamics

Utensil dynamics are shaped by the current geometric
states and action direction. Formally, this dynamic behavior
can be expressed as θt+1 = {(θt, s⃗t, a⃗t), where s⃗t encap-
sulates the current geometric properties r, l, and θ, while

4.425 × 10−2

4.45029 × 10−2

4.47557 × 10−2

4.50086 × 10−2

4.52614 × 10−2

4.55143 × 10−2

4. 57671 × 10−2

4.602 × 10−2

1.4375 × 10−3

1.3513 × 10−3

1.1788 × 10−3

9.2 × 10−4

6.325 × 10−4

4.025 × 10−4

1.887 × 10−4

9.975 × 10−5

z (m) r (m)

(a) (b)

(c) (d)

Fig. 3: Calibration pipeline. (a): Running calibration script
on Dobot robotic arm. (b): Measuring radius and record
coresponding z-axis value. (c): Fitting curve of the fude pen.
(d): Fitting curve of the calligraphy brush.

a⃗t = (δx, δy)t or a⃗t = (δx, δy, ϕ)t denotes the action at
timestep t, with DoF varying depending on whether the tool
is soft or rigid.

For the fude pen, the dynamic function corresponds to the
two-dimensional action direction, i.e. θt = arctan (δy/δx).
For the rigid flat-tip marker, the differential dynamics ∆θ =
θt − θt−1 is controlled directly by the RL algorithm.

Modeling the movement of calligraphy brush is a tough
task. Here we provide a crafted approximation: we derive
three different situations of brush dynamics according to the
angle between the trajectory and the tip. The corresponding
formulas are as follows:

θt+1 = θt +

10◦ · S, C ∈ [−1,−0.7]
5◦·S·(1+C)

r , C ∈ (−0.7, 0.96)
165◦ − θt, C ∈ [0.96, 1]

Where C = C(θ⃗t, ⃗skel), representing the cosine similarity
between the tip of the brush and the motion trajectory, and
S denotes the sine "similarity" between the two vectors.

C. Calibration

In previous sections, we modeled tool properties in our
RL environment, primarily relying on human-defined speci-
fications. The sequence finetuning process was trained within
this RL environment, and the ultimately optimized sequences
were demonstrated on a 3 DoF robotic arm. To address
the sim-to-real gap and to accurately replicate the training
results, we calibrated the relationship between tool geometry
r and robotic arm height z. We devised a script to control the
arm’s writing with different pen strokes (r) at varying heights
z on paper. By measuring and fitting piecewise linear curves,
we obtained the r − z relationship, depicted in Figure 3.
During robotic demonstration, we employed the fitted r− z
curve to translate optimized trajectories into 3 DoF control
sequences for reproduction.

Ground truth

Rewrite with

Fude pen

Rewrite with

Calligraphy brush

Coarse sequences

(a) Rewriting on Chinese Characters. CalliRewrite controls the fude pen to master the handling of brush strokes in chinese characters, including
the starting, ending, and pause strokes.

Ground truth

Rewrite with

Fude pen

Rewrite with

Calligraphy brush

Coarse sequences

(b) "Rewriting on English Characters. CalliRewrite replicates variations in stroke thickness and controls the beginnings and endings of horizontal
strokes with a Chinese calligraphy brush.

Fig. 4: Crafting character detail with diverse tools. Whether with a fude pen or a calligraphy brush, CalliRewrite ensures
nuanced stroke variations and captures unique design elements, tailored to each utensil’s characteristics.

III. CONSTRAINED SEQUENCE OPTIMIZATION WITH
REINFORCEMENT LEARNING

We define the refinement process of a coarse sequence
as a constrained sequence optimization problem, employing
reinforcement learning (RL) algorithms (specifically, the Soft
Actor-Critic algorithm) on the discretized sequence. In each
episode, the reinforcement learning agent starts from the
initial state, corresponding to the beginning of the sequence,
and proposes actions for each state, which are then used to
update the coordinates of the sequence points after scaling.
The entire optimization process iterates multiple rounds to
refine the original sequence. The basic action space of the
RL agent consists of two dimensions, δx and δy , representing
the vectors for moving the agent from the original discretized
state points. In the implementation, we convert these vectors
to polar coordinates r′ and θ′ to represent the length and
direction of movement, where r′ ∈ [0, 1]. The scaling factor
τ can be adjusted to increase or decrease the magnitude
of the reinforcement learning algorithm’s fine-tuning on the
sequence. A large τ leads to a broader exploration range
during the initial stages of reinforcement learning, making
it more prone to going out of bounds. Conversely, a small
τ tends to cause the reinforcement learning algorithm to

converge to local minima, resulting in suboptimal fine-tuning
of the sequence. Through experimentation, we set the default
value of τ to be 0.03 to achieve a good balance between
exploration and exploitation.

IV. SUPPLEMENTARY EXPERIMENTS

In this section, we provide more qualitative experiments
to discuss our method’s effectiveness.

A. Same glyph with different tools

In order to assess the adaptability of our model to different
writing tools, we employed both a fude pen and calligraphy
brush to reproduce the same characters and compared the
resulting handwritten outputs. Examples of Chinese and En-
glish calligraphy fonts were provided on a 4cm × 4cm scale,
and then re-rendered using a fude pen and calligraphy brush.
The effects are illustrated in Figure 4. Through comparison,
it is evident that the model successfully reproduced the
corresponding fonts using both tools. Furthermore, when
using the fude pen, the model was able to replicate the
nuances and strokes characteristic of Chinese calligraphy,
while also demonstrating proficiency in handling the unique
starting and ending strokes of English characters when using
the calligraphy brush.

REFERENCES

[1] H. Mo, E. Simo-Serra, C. Gao, C. Zou, and R. Wang, “General
virtual sketching framework for vector line art,” ACM Transactions
on Graphics (TOG), vol. 40, no. 4, pp. 1–14, 2021.

[2] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in
Proceedings of the IEEE international conference on computer vision,
2017, pp. 2961–2969.

[3] “Kaiti-GB2312,” https://www.onlinewebfonts.com/download/
8a1e9fe86f7a9489ec091ec4b78af185, accessed: August 25, 2023.

[4] “KanjiVG,” http://kanjivg.tagaini.net/, accessed: August 25, 2023.
[5] J. M. Hollerbach, “An oscillation theory of handwriting,” Biological

cybernetics, vol. 39, no. 2, pp. 139–156, 1981.
[6] A. J. Thomassen, R. G. Meulenbroek, and H. J. Tibosch, “Latencies

and kinematics reflect graphic production rules,” Human Movement
Science, vol. 10, no. 2-3, pp. 271–289, 1991.

[7] H.-L. Teulings, “Handwriting movement control,” in Handbook of
perception and action. Elsevier, 1996, vol. 2, pp. 561–613.

[8] J. Li, W. Sun, M. Zhou, and X. Dai, “Teaching a calligraphy robot via a
touch screen,” in 2014 IEEE International Conference on Automation
Science and Engineering (CASE). IEEE, 2014, pp. 221–226.

[9] C. C. Neo, E. L. M. Su, P. I. Khalid, and C. F. Yeong, “Method to
determine handwriting stroke types and directions for early detection
of handwriting difficulty,” Procedia Engineering, vol. 41, pp. 1824–
1829, 2012.

[10] A. J. Thomassen and H.-L. H. Tuelings, “The development of direc-
tional preference in writing movements,” Visible Language, vol. 13,
no. 3, p. 299, 1979.

[11] H. T. Wong and H. H. Ip, “Virtual brush: a model-based synthesis
of chinese calligraphy,” Computers & Graphics, vol. 24, no. 1, pp.
99–113, 2000.

[12] N.-H. Chu and C.-L. Tai, “An efficient brush model for physically-
based 3d painting,” in 10th Pacific Conference on Computer Graphics
and Applications, 2002. Proceedings. IEEE, 2002, pp. 413–421.

[13] S. Xu, F. C. Lau, F. Tang, and Y. Pan, “Advanced design for a realistic
virtual brush,” in Computer Graphics Forum, vol. 22, no. 3. Wiley
Online Library, 2003, pp. 533–542.

[14] N. Xie, H. Hachiya, and M. Sugiyama, “Artist agent: A reinforcement
learning approach to automatic stroke generation in oriental ink paint-
ing,” IEICE TRANSACTIONS on Information and Systems, vol. 96,
no. 5, pp. 1134–1144, 2013.

https://www.onlinewebfonts.com/download/8a1e9fe 86f7a9489ec091ec4b78af185
https://www.onlinewebfonts.com/download/8a1e9fe 86f7a9489ec091ec4b78af185
http://kanjivg.tagaini.net/

	Coarse Sequence Extraction
	Architecture Introduction
	Unsupervised Loss Design

	Modeling Writing Utensils
	Geometry Properties
	Defining Motion Dynamics
	Calibration

	Constrained Sequence Optimization with Reinforcement Learning
	Supplementary Experiments
	Same glyph with different tools

	References

